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NOTE

This report was written by Lt. Colonel A. D. Sela,
Israeli Army, who spent a year at the Land Locomotion
Laboratory. Since the Author had to comply with a
definite deadline date set for his return, he tried to
run as many experiments as possible before his departure
from the U. S. A., with the intention of completing his
analysis of the data upon his return to Israel. Therefore,
the present report should not be regarded as a complete
research paper. A full account of Colonel Sela's

research will be published in the near future.
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OBJECT

Study the shear stress distribution under a rigid
wheel so that the mechanics of sbil—tire interaction
may be better understood and the flexibility of present

prediction techniques enhanced.
RESUL TS

The analytical method proposed in this report for
the description of the shear and normal stresses as a
function of contact angle, slip, wheel geometry, Ioad
and soil properties has been shown to be correct by

means of experimental data obtained in sand.

CONCLUS TONS

Based on the analysis described in this report, it
can be shown that in each soil there exists a particular
load for a given wheel which allows the wheel to operate

with maximum efficiency.

ADMINISTRATIVE INFORMATION

This program was supervised and conducted by the
Land Locomotion Laboratory of ATAC under DA Project No.

1-A-0-13001-A-039, Project No. 5016.11.84400,
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ABSTRACT

Analytical expressions are formulated to describe the
distribution of shear stresses which arise due to slip
and soil flow,

The distribution of the shear and normal stresses
along the wheel-scil interface is established as a function
of slip. The stresses under a towed wheel are also
described.

Actual measurements of the stresses by means of a
special transducer embedded in the wheel are presented
and compared to theoretical values. It is found that the
agreement is satisfactory. It is concluded that further
analysis of the available data will lead to a better under-
standing of the mcchanics of tires operating off-the-road
and to an improvement in wheeled vehicle prediction

techniques.
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I. INTRODUCTION

The mechanics of a pneumatic tire moving in soft soil
is one of the most difficult and important basic problems
in land locomotion research. Because of the extremely
involved nature of the problem, a step by step method
seems to be the only feasible avenue of approach for the
solution. 7The first logical step is the investigation of
the mechanics of a rigid wheel, because of the complications
caused by thc influcncc of the inflation pressure, the
carcass stiffness and the tire tread are thus eliminated.

The mechanics of the rigid wheel-soft soil problem
has been investigated by several researchers. (See Report
No. 83.) 1In ordecr to establish the basic equations of
equilibrium various assumptions have been made concerning
the pressure distribution along the soil-wheel interface
surface. The actual measurement of pressures has been
attempted first in 1960 by Vincent, Uffelmann, and Hegedus.
The conclusion of these studies was that the tangential
stresses play a more important role than that had been
assumed by previous investigators. Thus, the measurement
of the tangential or sheer stresses along the wheel surface
which had not been done in the past, was made to be the
cornerstone of the present investigation. Uffelmann

measurcd tangential stresses, but he used a lug on the



wheel surface for this purpose, thus he altered the stress

pattern under the wheel,

The author had established an analytical method for
the description of the shear stress distribution prior to
the beginning of the test series., The first analysis of
the test data seems to support the aforementioned theoreti-
cal method,

I1. OBJECT

The object of this study was to verify the author’s

theoretical work on the mechanics of a rigid wheel by means

o of experiments., The experimental apparatus allowed the
measurement of all the factors influencing the equilibrium
of the wheel including the tangential stress distribution.
The program was expected to give a definite answer to some
questions hitherto "avoided" by making unsupported assump-
tions. The final gbal of this work, therefore, was to
improve the understanding of the mechanics of a tire working
off the road and hence to lead to the improvement of present
wheeled vehicles design techniques as well as to provide

- better methods for whecl performance prediction.

5 = : I1I. SUMMARY

This study includes both theoretical and experimental
investigation of the shear to normal pressure ratio-

distribution under 2 rigid wheel operating in sand. The

Rl 5k
~N
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ability to predict this ratio is of great importance,
since it will enable a designer to evaluate the influence
of wheel dimensions on the performance of a wheel in a

given soil. It has been found that the experimental results

support the proposed theory with satisfactory accuracy.

IV. CONCLUSIONS

The following conclusions are drawn:
(a) At the leading portion of a wheel-soil
interface the soil particles are pushed (bulldozed) forward,

whereas along the trailing portion the soil is displaced

rearward.

(b) A critical point on the interface, character-
ized by ©¢d, separates the two zones. This point may be

approximated by the theory presented in this report.

(c) 1In the case of a towed wheel, the bulldozing

zone extends from bottom dead center to the leading edge

of the interface.

(d) Prom the analysis and test results, one can
show that there exists a given load for each soil and
wheel under which the wheel operates with maximum

efficiency. The computation of this load will be presented

in a subsequent report.
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V. RECOMMENDATIONS

Since this study is the firét of it$ kind; it provides
a basis for a éreliminary understanding of the behavior
of s0il under a wheel. It also provides the basi# for
more extensive studies along the following lines:

1. The function of soil shear displacement
due to soil flow.

2. A further study to investigate better
wheel design.

A study of a rigid wheel on soft soils should be
considered as the first part of a program which has as its
second phase a study of pneumatic tires on a hard surface.
Based on the results of the first two, a third and final
phase should be devoted to the study of pneumatic tires on

soft soil.

ot ulrié.uLmaiwi ;ﬁuuﬂkui\ni\ﬁ.: .
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V1. THEORETICAL ANALYSIS

The Coulomb coefficient of friction in its broader
meaning c#n, for soil, be used to describe the ratio of
shear to normal stresses as a function of shear deformation,
The ability of a wheel to develop traction, overcome soil
resistance and the soil braking moment depends entirely
upon the degree to which it mobilizes the shear forces
along the interface of the wheel and the soil, It follows,
then, that if one knows the shear-force deformation
relationship of a soil and the shear deformation .of each
point along the wheel contact area, the ratio of shear to
normal stresses can be predicted (1). Such an ability is
of great importance since it will enable a designer to
evaluate the influence of various wheel dimensions on the
performance of a wheel in a given soil.

The theoretical analysis is based on two assumptionst
1 ~That the shear stress-strain relationship of the soil
is known and can be mathematically described; 2 -That the
soll displacement associated with shear stresses can be
analyzed by standard engineering methods and can alsc be
mathematically described.

Shear displacement undcr the wheel is caused by a

combination of slip or skid and soil flow. By introducing




displacement valu=s obtained‘for points along the contact
area into the stress-strain equation, the ratio of shear
to normal stress is readily obtained. The mathematical
description of the shear stress-strain relationship of a
soil has been adequately presented in Ref, 1. Bevameter

measurements indicate that this relationship can be

expressed for sand by the general equation:

: d
i % = 'tan ¢ (1 - € k) » ® e e ® & &« & s o (1)
7 It has been shown (2) that the shear displacement due e

E to slip or skid is proportional to the slip rate and the
distance from the poini in question to the leading edge of
the contact area. The displacement for a rigid wheel in

s0il can be expressed mathematically as followsrs

D
di=2(0(0--'2()1'..............(2)

By neglecting soil displacement due to flow, the §
p
ratio along the contact area is described by introducing

the value of 'd,* from Bquation (1) into Equation (2).

; *Slip and skid are defined in this paper as follows:
v
: Siip = 1 - _a
i v,
: . t
Skid = 1 - V't
Va
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Figure 1 shows a family of curves where the
is plotted as a function of the contact angle, o€ , for
various slip rates in a dry sand.

The flow of a soil particle under a wheel depends on
the resultant force produced by the wheel on the particle.
At any point under the wheel there exists a normal pressure,
p, and a shear stress, s, which are defined in terms of

forces as follows:

Normal force AN p AA

s AA

1!

Shear force DS
where,
A A is the contact areca between the particle and the wheel.

Since these forces are vectors, their horizontal components

will be,
AN, = p AA sinx
Ash = s AA cosx
where,
Vo = Linear velocity of the wheel
Vi = Tangential velocity of the wheel

Although both slip and skid are denoted by positive
values of i , the context in which (i] is used leaves little
roon for error concerning which of these values is being dealt

with.
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Pigure 2 shows that the two horizontal components
assume opposite directions in the case of a driven wheel.
The soil particles will move in the direction of the
resultant force since it is the difference of the two
huxizontal forces. PFollowing this reasoning it can be seen
that when p BA sin X>s AA cose~ , the soil particlve
will be pushed forward and eventually be bulldozed out of
the rut, If pAA sinx < sAA cosx , the soil particle
will be displaced rearward and eventually embedded in the
rut.

Under a slipping wheel, the leading portion of the
contact area satisfies the first condition whereas the
trailing portion satisfies the second. At the critical
point on the soil-wheel interface, ™d, which divides the
leading from the trailing portion, a condition occurs where

p AA sin®d gy =g A Acoswg or s = tan Kg ., . . (4)
: P

The leading portion of the contact area is usually
associated with soil displacement by bulldozing, whereas
the trailing portion is associated with compaction., The
additional displacement by soil flow in the bulldozing zone
obviously adds to the total shear displacements and hencé
affect the s «ratio. The intersection of the s curve
with the taII'l) X curve occurs at Xy. Values og A g for

various slip rates may be readily obtained from PFigure 1.
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o The’actual value of displacement due the soil flow

is difficult to.ascertaih. If this value is assumed to

be a linear function of the distance fromo(d to the

point'in question, a mathematical model can be established

to bettef understand what is happening in the bulldozing

zoﬁe.- Thus, the displacgment due to flow is:
df=%(oc-'xd ) R €5

where m is the coefficient of proportionality. The s ratio

P
in the bulldozing zone is then obtained by introducing this

value in Equation (1) as follows:
) p | ..
9K \.(d° & )i o= (m-«d)m:{
s =tan g4 1 - e . (6)
D .
Values obtained for s by Bquation (6) at very low

slip rates show that over a certain contact length s is
p
greater than tan €A ., Such a condition will require a

reversal of the flow direction and hence is impossible. One
might conclude from this that the rate of flow over this
length of contact is not linear as previously assumed. It
is felt that the rate of flow in this region diminishes to
such values that the displacement keeps the s ratio close

to tan EK'. Blow in the leading portion approaches its full
value as ™ approaches X 0" Experimental results for

higher slip rates justify the assumption of a linear relation




for displacement as given in Equation 6. The curves
describing. s for the bulldozing zone in Figure 1 have been
constru;tedpin light of the above considerations for slip
conditions.

In the case of the skidding wheel, a towed wheel with

braking moment, the horizontal components of normal and

tangential forces are seen to act in the forward direction

over the entire contact length. This implies that the

130 ETFAIER gy

bulldozing zone extends from bottom dead center to the

RETRiN

or that o 4 = 0. Bxperimental

- forward leading edge, G,

i_ i data indicate that shear stresses due to skid reverse

; direction, This implies also that the relative shear
displacement between the wheel and the soil reverses its
direction at a point ¥, along the contact area. The
total shear displacement at each point under the wheel will
be the absolute value of the difference of shear displace-

ments due to skid and flow or:

dt=%l;(:&o—°<)i—0<m5] e e e e e e e e (D

This displacement and the related curves are described

o Tl

in Pigure 3 for various skid rates
Bquation 7 indicates that at some points along the
? contact area the shear stress is zero when the condition

\

|

|

} : (X, - o) i=mxis satisfied, In solving for this
‘ :

|

|

10
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critical location, defined as o ., we find:

o = ™o
i o (8)
o o . ° e . - - - . - - -
l 1 -
In the forward direction from ©¢ . the shear stress

is positive while to the rear the sign becomes negative.
Analysis of Equation 8 shows that as the skid approaches
zero, ® . also approaches zero. In such a case the shear
stresses along the entire contact area are positive and a
driving moment must be applied to balance these stresses.

By assuming a symmetrical negative and positive shear
stress distribution, an assumption justified by experimental
evidence at conditions of zero torque, X . will be located

in the center of the contact area as follows:

( -f
oo 0 ?/o 9

A simultaneous solution of Equations 8 and 9 yield the

rate of skid for these conditions:

X o Bo - =X 9
2 1+
io
i A OQ)- ﬁo
=m. — . (10)
0 e e e e e e . . .
>o t Bo

Pigure 2 is plotted for the case in which,

i o= (,30) 50 - 10} . 0
0 <so+1o -2

i b akdiel i L
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This analysis shows that a simply towed wheel is a par-
ticular case of a braked wheel where the braking moment is
éq;ai to zero. rPurtherrréflection indicate§ that the
toique proddced by the negative shear stresses balances
both the applied braking torque T, and the braking torque

produced by the positive shear stresses under the wheel.

oL - o
> sdA = T, + D sdA
2 b 2 o
g
0 r
In the condition where Tb = 0, we find:
o <,
sSdA = sdA
B o o

The practical significance of a braked wheel is
largely confined to agricultural needs where the tow force
applied to the vehicle frame is also utilized to operate
some implement., However, a towed wheel (T, = 0) is of
considerable importance to the military. The analysis of
the skidding wheel was included in this study to provide
as complete a description as possible,

TEST EQUIPMENT

Pigures 4 to 14 illustrate the test equipment and
the soil bin used for this study, The dimensions of the

bin are approximately 20 feet long by 5 feet wide and




filled with about 14 inches of loose dry sand. The width
of the bin permitted three separate passes of the wheel

. without lateral disturbance between passes as shown in
Pigure 13, The soil was processed to a depth of 10 inches
by a tiller that rotates about a verticle axis, and then

leveled by a leveling board mounted on the dynamometer

: carriage. The complete processing cycle is illustrated
f ; in Pigures 10 to 12.

The test equipment for this study was designed to
measure the following parameters: sinkage, torque, angular
% wheel position, linear carriage position, drawbar-pull,
shear, and normal stresses along the wheel-soil interface.

A series of tests were run with vertical loads of 50, 100,
150, 200, 250 and 300 pounds applied by means of dead
weights. Por each load the conditions of slip and skid

were varied from 0 to approximately 100%. The test para-
meters were recorded simultaneously on a six-channel recorder
which also had an event marker.

The measurement of each parameter involved difficulties

which could provide the theme of a separate paper. The

S e g g

simplest measurement was the sinkage. This was obtained

e 1

with a linear potentiometer mounted on the dynamometer
carriage and referenced from the soil surface.

Torque was measured by a torque gage located on one

156 iy s b

ENA 30 g o
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side of the wheel on the wheel axles between the wheel and
the gear train.

Drawbai-pull was measured with a strain gaged canti;
lever mounted on the other side of the wheel. The canti-
lever measured the force transferred from the wheel to the
carriage.

Pigures 5 to O illustrates the transducers used to
measure shear and normal stresses. In essence, the shear
stress was measured by a strain gaged cantilever located
as an integral part of the normal stress transducer on the
periphery of the wheel. 'The transducer®s electronic signal
was transferred from the wheel to the recorder through slip
rings.

The rate of slip and skid as defined on Page 4 is a
comparison of the distance traveled by the periphery of
the wheel to that travelced by the carriage (or wheel axle)
during the same increment of time.

These distance valucs were rccorded simultaneously as
a function of time on the recorder in 5° increments for
the wheel periphery and for a corresponding distance of
axle travel. A microswitch and event marker were used to
indicate when the shear and normal transducers were at

bottom dead center of the wheel,

By varying the drive controls of the carriage and
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wheel the vafious conditiéns of slip and skid ﬁere obééiﬁé&;
Braking moments were applied through a specially constructed
unit in the gear train.

All transducers were calibrated using dead weights
for loads and by means of direct measurements for linear
readings., A special calibration technique was required
for the drawbar-pull measurements to account for the effects
of the driving or braking torque applied to the wheel. This
influence is of importance in a device in which torque is
supplied on one side of the wheel and the drawbar-pull
measured on the other. A detailed analysis of this cali-
bration technique is not considered appropriate in this
paper. However, a note of warning is offered to caution
the reader to consider any "coupling" between drawbar-pull
and torque when dealing with the usual wheel dynamometer,

» TES'T' RESULTS AND BVALUATION

The shear displacement parameters of the soil were
determined by a Bevameter for various normal pressure values
in order to compare the test results with the theoretical
analysis. Pigures 15 and 16 show the various values of K,
the s0il shear constant and tan $, where ¢ is the angle of

internal friction, Mean experimental values of K = 1,0

inch and tan § = .44 (B 24°) were used in this study,




By 1atroducing these values in Equatioh (1), we have:
' -d
i = 044 (1 - e)
p

The s ratio may be readily computed theoretically for

each pbing along the contact area by substituting *d' in
Bquation (2) and Equation (5) for slip, and in Equation (7)
for the skidding condition. This technique has been applied
to the case of a driven wheel in PFigures 17 through 25, where
the plots of the upper portion of the graphs show experimen-
tal results of shear and normal stresses while the lower _
plots show a comparison of the experimental s ratio with »

1%
the computed values.

il
O R R A T N ST ) O e i

i It can be seen that the general shape of the experimen-

: tal and computed curves are qualitatively the samc, Both
of the curves climb to the left and right from a cusp point.
It can be seen that the cusp points of the experimental
curves are very close to the tan ©® curve as could be
expected. This shows that different shear displacement
functions act to the left and to the right of the tanw

curve which is in agreement with the theoretical analysis.

The theoretical conclusion that ths s ratio at s¢ 4 equals
tan o 4 is verified. Hence w« 4 is seen to define the
limits of the bulldozing and compacting zones.

Figure 26 shows a rather small scatter for a plot of

experimental s values obtained at the cusp points versus
p

16



tan oz 4. Generally it is seen that lower slip values

yield smaller values of X 4 which is also in agreement

with the theory.

Despite the good qualitative agrcement in some cases,
the expected quantitative disagreement requires some
explanation. 7This disagreement is believed to occur due
to a number of reasons:
| 1. 7The soil conditions are not homogeneous.

2. The soil flow in & direction transverse to
wheel motion was not considered in the theoretical analysis.

w Since the shcar transducer wmeasures components in the
longitudinal direction only, any [low to the side will mean
that a stress valuc smaller than the truc resultant causing
| the tangential and transversc [low will be sensed. This
of course, dimplies cquality in stress and strain directions
which may not be true.

3. The soil displacement under the wheel may
deviate from the lincar relationship assumed.
| 4, Readings of the shear and normal stresses at
| both extremes of the contact area are low and thus a small
‘ error in reading causes a large error in the s value.
‘ »
| In spite of the small quantitative deviaiions of the
E computed s ratios from the experimental ratlios, it is
i believed ihat the theoretical analysis satisfactorily

! describes the behavior of the soil-wheel system for a driven

wheel.

| 17




PFor the braked wheel, the experimental results of

shear and normal stresses at the wheel-soil interface are

_presented in Pigures 27'through 37, A comparison between

the computed and experimental values of s is given in
p
these curves. The major obstacle, however, arose due to

the fact that the *m' value in Equation (7),

dt = pz- [ (b(o -} i -Mm)-]

was difficult tc define either theoretically as a function

NS

or as a constant. A few trial and error attempts have been
made with fair success toward this end.
The first trial was to determine a constant value for

"'m* by Bquation (8):

ort * 5 -1 =

A r

% 5
Bigure 38 shows a plot of lo - 1 versus lo
8 g e g
skid, i, and yields a constant value of m = .65. By using
this value of 'm', PFigure 39,which is a comparison between

the experimental and computed values of X could be

T?
constructed. In spite of the fact that there is a close
correlation in this plot, the theory had to be discarded
because if "m' were of a constant value of 0.65, the skid

rate would have to be over 55% for conditions of zero

braking., This, in fact, does not occur. Figures 30, 31,




32 and 33 seem to indicate that the shear stresses obtained

with an *m' of .65 are too high to be acceptable.

The second approach to define 'm® was through the
condition in which the wheel was towed at almost zero
braking torque. Experimental evidence for this condition

. shows:

L

i
o

o} 2 . s - a & & & & e e s o (9)

where, °¢ro is the point of shear stress reversal on the
contact area for zero braking torque. It is assumed that
'm! remains constant at various slip rates and may be
defined for zero torque by substituting X p, for X, in

" Bquation (8) or:

m =(x0 +P0

io [ ] . - . - . . L] * . . .(10)
o T Vo

Pigure 40 shows a plot of X . = computed by Equation (9)

versus experimental values of & ., The agreement as seen

o
in the plot is reasonably good, yet in order to define 'm?
by utilizing this theory, a way must be found to define,

theoretically, the rate of skid, i, for zero torque. It

0?

is felt that this may be achieved, but the data available

purpose,
As in the case of a driven wheel, it is thought that

|

|

i

’ from this set of experiments is inconclusive for this
|

|

) qualitatively good agreement for the skid condition exists
|

|

19



between theoretical and experimental results.r'ln Spite of
the fact that the behavior of.'m' has not been established,

it seems that a fundamental understanding of the skidding

wheel-~soil relationship has been achie?éd.

20
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FIG. 35, SOIL STRESSES, SHEAR (S) AND NORMAL (P) UNDER A BRAKED,
RIGID WHEEL IN SAND.
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FIG. 36. SOIL STRESSES, SHEAR () AND NORMAL (P) UMDER A BRAKED,
RIGID WHEEL.



FiG. 37. SOIL STRESSES, SHEAR (S) AND NORMAL (P} UNDER A BRAKED,
RIGID WHEEL.
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